高速高分辨率光纤布拉格光栅传感系统的解调技术

王拥军1 刘永超1 张靖涛1 杨昭怡1 王 智2

(¹北京邮电大学电子工程学院,信息光子学与光通信国家重点实验室,北京 100876 ²北京交通大学理学院光信息所,北京 100044</sup>)

摘要 提出使用基于半导体光放大器(SOA)的环形激光器与可调谐光纤型法布里-珀罗(F-P)滤波器作为扫描光 源的光纤布拉格光栅(FBG)解调方案,综合使用梳状滤波器与乙炔气体的吸收谱进行谱线标定,采用数字信号处 理算法进行时域滤波与 3 dB 功率寻峰算法。实验证明,该解调方案可以同时实现对超过 1000 个温度 FBG,或 240 个应变传感光栅进行解调,解调频率达到 1000 Hz,波长分辨率达到 0.5 pm,温度检测精度达到 0.05 ℃,应变检测 精度达到 0.6 με。

关键词 传感器;光纤光栅解调;可调谐环形激光器;梳状滤波器;乙炔气体吸收谱 中图分类号 TP212 **文献标识码** A **doi**: 10.3788/CJL201340.0205003

Interrogation Technology for High-Speed and High-Resolution Fiber Bragg Grating Sensing System

Wang Yongjun¹ Liu Yongchao¹ Zhang Jingtao¹ Yang Zhaoyi¹ Wang Zhi²

¹ School of Electronic Engineering, State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

² Institute of Optical Information, Beijing Jiaotong University, Beijing 100044, China

Abstract A new interrogation scheme based on semiconductor optical amplifier (SOA) ring laser and tunable Fabry-Perot (F-P) interferometer for fiber Bragg grating (FBG) sensing system is proposed. In the interrogation scheme, a gas absorption spectral line is used as a wavelength reference, and a comb filter is designed as a standard device that can dynamically calibrate the wavelength of FBG sensors. With digital signal processing technology and wavelength detection algorithm based on the 3 dB-power point, more than 1000 temperature sensors or 240 strain sensors can be interrogated with frequency of 1000 Hz. Experiment demonstrates that the strain measuring accuracy and wavelength to 0.05 \degree C.

Key words sensors; interrogation for fiber Bragg grating; tunable ring laser; comb filter; absorption spectral line for acetylene

OCIS codes 060.2370; 060.3735; 140.3600

1 引 言

光纤传感器由于具有体积小、重量轻、价格低、 易复用、不受外界电磁干扰等特性被广泛应用于石 油、铁路、化工、电力、航空航天等领域中。分布式光 纤传感系统可以实现对输油管道、铁轨、路基等大型 管线的应变、温度等参量的长期监控,在基础设施的 结构健康监测中具有广泛的应用前景。但是,分布 式光纤传感系统一般采用检测光纤中布里渊散射或 瑞利散射光的方法,接收到的光功率小,需要通过多 次平均(几千次至几十万次)才能达到要求的信噪

作者简介: 王拥军(1968—),男,博士,副教授,主要从事光纤通信与光传感等方面的研究。 E-mail: wangyj@bupt.edu.cn

收稿日期: 2012-07-05; 收到修改稿日期: 2012-10-16

基金项目:国家自然科学基金(61077014,61077048)、中央高校基本科研业务费专项资金(2009CZ07)和安全生产智能监 控北京市重点实验室主任基金资助课题。

光

比,并且测量范围广(几千米至几十千米),完成一次 有效测量的时间长达几十秒至几分钟,因此分布式 光纤传感系统不适用于实时性要求较高的监测场 合。此外,对于分布式光纤传感系统,需要在施工时 将光纤预埋在待测物体内,限制了系统的应用范围; 为了保证施工过程中传感光纤不能断裂,传感光纤 需要特殊封装,增加了系统成本。通过时分、波分等 复用方式,光纤布拉格光栅(FBG)能够组成准分布 式传感系统,可以实现大范围的定点监控;被测的参 量仅取决于 FBG 的反射波长,通过波长解调技术得 到相应的被测参量,不需要多次平均,可以有效提高 检测的速度与精度;通过各种封装的技术,实现 FBG 与各种待测物体有效的物理接触,扩大了 FBG 的应用范围:传输光纤不需要特殊封装,不需要埋入 待测物体中,减小了施工难度,降低了系统成本。相 比于分布式光纤传感系统,目前 FBG 传感系统的商 业应用更为广泛。一个完整的 FBG 传感系统由 FBG 传感器、传输光路与解调设备构成。FBG 解调 设备采用波长解调方法,解调方法不仅影响传感系 统的测量精度、测量速度,而且决定传感系统中 FBG 的复用方式、复用数量及传感网络的拓扑结 构。文献「1]中提出利用参考光栅对传感光栅进行 解调的方案,可以得到较高的波长分辨率与较高的 速度,但是,这种方案不利于 FBG 的复用;文献[2] 中提出使用阵列波导光栅(AWG)的解调方案,可同 时实现对多个 FBG 传感器的解调,可解调的信号频 率超过100 kHz,但是,该方案中一个光栅需要一个 AWG 通道和一个光接收单元,增加了系统成本;文 献[3]中使用干涉光谱法实现对 FBG 的快速解调, 可解调信号的频率高达 48.6 MHz, 但是, 该方案中 复用 FBG 的数量有限;文献[4,5]提出使用宽带光 源与可调谐法布里-珀罗(F-P)滤波器对 FBG 进行 解调,复用光栅的数量有所增加,解调速度达到 1000 Hz,波长分辨率达到 2 pm,但是,复用的 FBG 数量与波长检测精度不足。对于一般的 FBG 传感 系统的应用场合,要求传感系统有较大的覆盖范围, 即要求较多的 FBG 复用数量;系统有较快的响应速 度,1000 Hz 的解调速度可以满足大多数实时监控 的需要;系统的波长分辨精度小于1pm,相对应的 温度检测精度小于 0.1 ℃, 微应变检测精度小于 1 με;系统的成本较低。针对以上要求,本文提出使 用基于半导体光放大器(SOA)的环形激光器作为 FBG 传感系统的光源,使用可调谐 F-P 滤波器进行 波长扫描,联合使用梳状滤波器与乙炔气体的吸收 谱对波长进行动态定位,有效提高了可利用的光谱 宽度、复用路数、复用的 FBG 数量、扫描频率和光谱 分辨精度。

2 解调原理与动态波长标定方法

系统结构如图 1 所示, SOA、光隔离器、宽带滤 波器、可调谐 F-P 滤波器与光耦合器构成一个可调 谐的环形激光器。压电陶瓷(PZT)用来调节可调谐 F-P 滤波器的腔长, 在 PZT 上施加扫描电压, PZT 产生伸缩, F-P 滤波器的中心波长就随之变化。当 向 SOA 注入一个大于其阈值电流的直流电流时, SOA 会产生放大作用, 当 SOA 的增益大于环路的 损耗时, 环形激光器输出与 F-P 滤波器的中心波长 对应的激光。

SOA 的增益系数为

$$g(\omega) = \frac{g_0}{1 + (\omega - \omega_0)^2 T^2 + P/P_s},$$
 (1)

式中 g。为最大增益系数, ω 为注入光信号的角频 率, ω。为原子本振角频率, T 为偶极子的松弛时间, P 为注入的光功率, P。为增益介质的饱和功率; 信 号光经过整个 SOA 增益区的增益为

$$G = \exp(gL), \qquad (2)$$

式中 L 为 SOA 增益区的长度;稳态下 SOA 的注入 电流 I,载流子浓度 N 与输出功率 P 的关系为

$$\frac{I}{q} - \frac{N}{\tau_{\rm e}} = \frac{a(N - N_{\rm o})P}{\sigma_{\rm m}h\nu},\tag{3}$$

式中 N₀ 为透明载流子浓度,a 为微分增益数,τ_e 为 载流子寿命,σ_m 为有源区的横截面积,h_ν 为光子能 量,q 为电子电量;光纤型 F-P 滤波器输出的光强为

$$I_{\rm T} = \frac{I_0}{1 + \frac{4(1-\alpha)R}{\left[1 - (1-\alpha)R\right]^2} \sin \frac{2\pi nL'}{\lambda}}, \quad (4)$$

式中α、R、L′、n、λ分别为 F-P 腔中的损耗、端面反 射率、腔长、材料折射率与工作波长。系统中 F-P 滤波器的自由谱区为80 nm,精细度为500~600。 一般的解调系统,使用可调谐 F-P 滤波器对宽谱光 源进行滤波,输出的扫描光源的谱宽为 0.13~ 0.16 nm, 一般 FBG 传感器的反射谱的 3 dB 谱宽在 0.1~0.3 nm,实际测得的 FBG 的反射谱为光源光 谱与 FBG 反射谱的卷积,因此,采集到的 FBG 的反 射谱被展宽;为了保证相邻的 FBG 之间不交叠,复 用的光栅数量要减少。向 SOA 注入 250 mA 的电 流,使用 SOA 的分段模型,通过(1)~(4)式可以得 到图 2 所示的环形光纤激光器输出的激光光谱,可 以看出,要形成稳定的激光,连续光需要在光纤环中 绕行 250 圈以上;在 50 圈时,激光光谱的 3 dB 带宽 小于0.05 nm,接近稳定输出时的激光光谱,作为扫 描光谱不会对采集的 FBG 反射光谱产生大的误差。 实验中静态测试发现:在不同的波长区激光光谱的 3 dB 带宽的数值不同,其范围在 0.01~0.06 nm之 间。与一般的使用可调谐 F-P 滤波器对宽谱光源 进行滤波的方法相比,输出的扫描光谱比较窄,相应 的采集到的 FBG 反射谱也比较窄,使复用的光栅数 量增加。光纤环的长度为 2 m,按 50 圈的延迟计 算,环形激光器输出可用激光的延迟时间约为 500 ns,对于 80 nm 的光谱范围抽样 1024 次,完成 一个自由谱区的扫描时间约 0.512 ms,因此光源的 扫描频率不高于 2000 Hz。当频率增加时, PZT 的 变形跟不上扫描电压的变化, 使 F-P 滤波器的扫描 范围缩小,考虑到 PZT 的响应特性,解调系统的扫 描频率可以达到 1000 Hz。向 SOA 注入250 mA的 电流时,环形激光器输出的激光功率超过12 mW, 可以平均分配到 30 个传感通道与 2 个校准通道,每 个通道得到的光功率约 0.375 mW,考虑到光栅的 反射率(0.9)与传输光纤(10 km)的损耗,接收到的 最大光功率约 0.16 mW,对于普通的 PIN 光电探测 器,检测灵敏度小于1µW,因此,接收的动态范围超 过 22 dB,利用普通 PIN 光电探测器完全可以分辨 反射谱的形状。对于一般的温度传感光栅,温度变 化1℃,FBG 波长漂移约为10 pm,温度测量范围为 -50 ℃~150 ℃,每个温度传感光栅的波长漂移约 为2 nm,对于每个通道 75 nm 的波长范围可以用复 用 37 个温度传感光栅,整个系统的 30 个传感通道 复用的温度传感光栅超过 1000 个;对于一般的应变 传感光栅,波长漂移 10 pm 约对应 12 με,应变测量 范围±4000 µε,每个温度传感光栅的波长漂移约 6.7 nm,考虑到应变测量过程中的温度补偿,一个 传感光栅需要一个补偿光栅,补偿光栅的最大波长 漂移为 2 nm,每个通道可以复用 8 个应变传感光 栅,理论上整个系统的 30 个传感通道复用的应变传 感光栅达到240个。

在解调方案中,通过改变施加在 PZT 上的电压 改变 F-P 滤波器的腔长,当电压从 0 变到 18 V,环 形激光器的输出波长扫过一个 F-P 滤波器的自由 谱区,一个确定的电压对应着环形激光器一个确定 的输出波长。环形激光器在波长域内对各分路中的 FBG 进行扫描,采集到的 FBG 的反射谱为光功率 与电压的分布关系,由 F-P 滤波器的中心波长与施 加在 PZT 上电压的关系曲线可以对 FBG 的反射谱 波长进行标定,得到真实的 FBG 反射谱。图 3 为实 验中 3 次不同时间测得的 F-P 滤波器的中心波长与 施加在 PZT 上的电压的关系曲线,可以看出:F-P 滤波器的中心波长与施加在 PZT 上的电压呈现非 线性关系;每次扫描结束后 PZT 的位置有所不同; 每次扫描的曲线变化形式不同,无法用曲线拟合得 到统一的数学表达式。此外,PZT 不仅受电压影 响,环境温度也会改变 PZT 的工作状态,实验表明, 温度改变 10 ℃,同一电压下 F-P 滤波器的中心波长 改变 3~5 nm。因此,实际系统中每次扫描过程中 需要对可调谐 F-P 滤波器进行动态标定,同时构成 一个闭环控制过程,通过被标定的波长,动态的调整 PZT 扫描电压的起始值,使 F-P 滤波器工作在一个 受控的稳定状态。在图 1 的方案中,一个梳状滤波 器被用来对可调谐 F-P 滤波器进行动态标定。梳 状滤波器两个峰之间的间隔为标准的 0.8 nm,将 F-P滤波器的自由谱区分成 100 个区,每个区的电 压对波长的变化可以认为是线性关系。当对传感分 路进行扫描时,同时也对梳状滤波器进行扫描,FBG 的反射谱必定处于梳状滤波器的某个区中,然后使 用线性插值就可以得到 FBG 反射谱的准确位置。

图 3 实测 PZT 的电压与 F-P 滤波器中心波长的 关系曲线

Fig. 3 Curves of relationship between PZT voltage and center wavelength of F-P filter in experiment

梳状滤波器也会受到温度的影响,当温度变化 100℃时,梳状滤波器各峰值的位置漂移 2~5 pm, 因此定标器件也会带来测量误差。由于气体的吸收 谱线不随温度变化,为了校正梳状滤波器带来的误 差,注入乙炔气体的气室被引进在图 1 的方案中。 在 1530 nm 附近,乙炔气体有 6 个较大的吸收谱峰: 1528.12,1530.37,1531.59,1532.84,1534.12, 1535.40 nm,如图 4 所示,它们被用来对梳状滤波 器进行校正。此外,由于在1518 nm附近,乙炔气 体也有 6 个较大的吸收谱峰,因此在系统中引入一 个谱宽约为 75 nm 宽带滤波器,使实际环形激光器 的输出波长限定在 1525~1600 nm 的范围。进行 一次扫描后可以由梳状滤波器对吸收峰进行标定, 得到的结果与标准的吸收谱线的差值即为由温度引 起的测量误差,用这个误差对 FBG 的反射谱进行校 正,就可以得到真实的反射谱。文献[6]也用气体吸 收谱进行标定,但是不能解决 PZT 造成的非线性 问题。

图 4 实测乙炔气体的吸收谱线 Fig. 4 Experimental gas absorption spectrum of acetylene

由于受到电路光路噪声、环形激光器输出功率 波动、采样的不连续性等因素的影响,实际采集的 FBG 的反射谱包含许多噪声,要正确快速地确定谱 线的漂移,需要先对采用到的曲线进行去噪声处理。 首先对采集的 FBG 反射谱进行频谱分析,按照分析 结果设计一个 63 节的有限脉冲响应(FIR)滤波器, 然后在嵌入式可编程门阵列(FPGA)中实现相应的 FIR 数字滤波器。图 5 为 FIR 滤波前后的一个 FBG 反射谱,可以看出,经数字滤波后,FBG 反射谱 中的噪声被完全滤除。一般采用寻峰法确定 FBG 反射谱的波长^[7],但是通过对滤波过的 FBG 反射谱 的观察发现,FBG反射谱不是标准的高斯型,波峰

图 5 FBG 的反射谱。(a)滤波前;(b)滤波后 Fig. 5 Reflected spectra of FBG. (a) Before filtered; (b) after filtered

的形状不规则,有的峰值偏左,有的偏右,这种偏向 对于同一个 FBG 是随机的。若采用寻峰法系统,解 调精度会降低。采用 3 dB 中点波长提取算法,通过 算法找到每个光栅 3 dB 功率值的中点,作为 FBG 反射谱的波长,解调精度较寻峰算法有了很大的 提高。

3 实 验

在图 1 的系统的一个传感通道上,串接两个分 别封装的应变传感光栅与温度传感光栅,室温下无 应力时应变传感光栅的中心波长为 1549.5 nm,室 温下温度传感光栅的波长为1547.7 nm。为了解决

应变传感光栅对温度的交叉敏感,在应变传感器中 也封装了一个中心波长为 1530.96 nm 的温度传感 光栅对应变传感光栅进行修正,修正公式为: $\epsilon = K(\lambda_1 - \lambda_0) + B(\lambda_{t_1} - \lambda_{t_0}),其中的 K,B 为与材料有$ $关的常数,<math>\lambda_1$, λ_0 与 λ_{t_1} , λ_{t_0} 分别应变传感光栅与温度 修正光栅的当前波长与初始波长。所有光栅的峰值 反射率约为 0.9。为了得到解调系统的波长检测精 度,对两个传感光栅在同一温度处应变的反射波长 进行了多次测量(见图 6)。可以看出,在恒温下,温 度传感光栅的波长漂移在 0.5 pm 以内;在恒温、恒应 力下,应变传感光栅的波长漂移也在 0.5 pm 以内。 结果说明解调系统的波长检测精度达到 0.5 pm。

Fig. 6 Measured results of wavelength drift. (a) Temperature sensor; (b) strain sensor

在应变测量中,恒温下应变传感器一端固定,另 一端加载重物,并逐渐增加重物的重量,记录重物重 量与对应的 FBG 反射谱中心波长,然后与应变片在 同一重量下的应变进行比较,得到应变与 FBG 反射 谱的关系[见图 7(a)],可以看出,在 0~2300 με 范 围内,应变与波长保持很好的线性关系;波长测量的 准确 度 达到 0.5 pm,对应应变的准确度达到 0.6 με。在温度测量实验中,将封装的温度传感光 栅放入恒温箱中,逐渐增加恒温箱的温度,记录温度 与对应的 FBG 反射波长,得到温度与 FBG 反射波 长的关系曲线[见图 7(b)],可以看出温度与 FBG 反射波长具有良好的线性关系;波长测量的准确度 达到 0.5 pm,对应的温度检测精度达到 0.05 ℃。

图 7 实验结果。(a)应变;(b)温度 Fig.7 Experimental results. (a) Strain; (b) temperature

4 结 论

采用基于 SOA 的环形激光器作为光源,在 PZT上施加扫描电压控制可调谐光纤型 F-P 滤波 器,改变环形激光器输出波长的方法,实现对 30 个 传感通道多达 1000 个温度传感 FGB 或 240 个应变 传感 FGB 的同时解调,解调频率达到 1000 Hz;联 合采用梳状滤波器与乙炔气体的吸收谱,对可调谐 F-P滤波器进行动态定标,消除了 PZT 的非线性与 不稳定性对测量带来的影响;采用实时数字滤波技 术与 3 dB 中点波长确定方法,提高了解调系统的波 长测量精度。实验可得系统的波长测量精度达到 0.5 pm,对应的应变测量精度达到 0.6 με,温度测 量精度达到 0.05 ℃。理论与实验表明,该 FBG 解 调系统达到了低成本、快速、高精度的测量要求。

参考文献

- 1 Y. Sano, T. Yoshino. Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors [J]. J. Lightwave Technol., 2003, 21 (1): 132~139
- 2 G. Xiao, N. Mrad, F. Wu *et al.*. Miniaturized optical fiber sensor interrogation system employing echelle diffractive gratings demultiplexer for potential aerospace applications [J]. *IEEE Sensors Journal*, 2008, 8(7): 1202~1207

- 3 C. Wang, J. Yao. Ultrafast and ultrahigh-resolution interrogation of a fiber Bragg grating sensor based on interferometric temporal spectroscopy [J]. J. Lightwave Technol., 2011, **29**(9): 2927~2933
- 4 W. Wu, L. Liang. Long-term real-time monitoring system for port machinery based on fiber grating sensors[C]. Wuhan: First International Conference on Intelligent Networks and Intelligent Systems (ICINIS), 2008. 354~357
- 5 W. Allan, Z. Graham, J. Zayas *et al.*. Multiplexed fiber Bragg grating interrogation system using a microelectromechanical Fabry-Perot tunable filter [J]. *IEEE Sensors Journal*, 2009, 9(8): 936~943
- 6 C. C. Chan, W. Jin, H. L. Ho *et al.*. Improvement of measurement accuracy of FBG sensor systems by use of gas absorption lines as multi-wavelength references [J]. *Electron*. *Lett.*, 2001, **37**(12): 742~743
- 7 Zhu Haohan, Qin Haikun, Zhang Min *et al.*. Peak-detection algorithm in the demodulation for the fiber Bragg grating sensor system[J]. *Chinese J. Lasers*, 2008, **35**(6): 893~897 生光敏 美術田 改 领领 来任在拉林来棚住房橱调出的目标
- 朱浩瀚,秦海琨,张 敏等.光纤布拉格光栅传感解调中的寻峰 算法[J].中国激光,2008,**35**(6):893~897

栏目编辑:何卓铭